Novel Therapeutics in the Management of Autoimmune Disorders: A Narrative Review

Authors

  • Virginus Agozie Umeh Department of Biochemistry, College of Natural Sciences, Michael Okpara University of Agriculture, Umudike, Abia State Nigeria Author
  • Obiora Emmanuel Abonyi Department of Biochemistry, College of Medicimne, Enugu State University of Science and Technology, Enugu, Nigeria Author
  • Nancy Oluomachi Uchenna Department of Biochemistry, College of Natural Sciences, Michael Okpara University of Agriculture, Umudike, Abia State Nigeria Author

DOI:

https://doi.org/10.64229/wcfsy429

Keywords:

Autoimmune diseases, Biologicals, Cell therapies, Cell and gene therapy, JAK inhibitors, Individualized treatments

Abstract

Autoimmune and chronic inflammatory diseases are common challenges to global health. Previous studies have emphasized that therapy with traditional immunomodulators relied on strategies of either immunosuppression or stimulation. However, new knowledge about immunity has led to treatments that are more effective at resolving the disease's pathways, with fewer serious side effects. As no immune disorder is static, this review focuses on current therapeutic strategies for immune disorders: biologics, small-molecule inhibition, cell therapy, and gene editing. Anti-Tumour necrosis factor (TNF) and Interleukin (IL)-17 inhibitors, for example, have been helpful in diseases such as rheumatoid arthritis (RA) and psoriasis, cytokines being biologics. Small-molecule inhibitors, such as Janus kinase (JAK) inhibitors, are oral therapies used to manage conditions such as ulcerative colitis. Among the cellular therapies, the principles of hematopoietic stem cell transplantation (HSCT) and Chimeric Antigen Receptor T-cell (CAR T cell) therapy have the potential to reprogram the immune system for long-term control. Furthermore, gene editing technologies such as clustered regularly interspaced short palindromic repeats (CRISPR) and ribonucleic acid (RNA) therapeutics are opening up the options for precise medicine. Biomarker-guided and pharmacogenomic treatment plans make the patient experience as effective as possible while minimising side effects. Some of the challenges identified include safety, cost, and accessibility thresholds for these therapies, as presented in the challenges and future directions section.

References

[1]Pisetsky DS. Pathogenesis of autoimmune disease. Nature Reviews Nephrology, 2023, 19(8), 509-524. DOI: 10.1038/s41581-023-00720-1

[2]Cheng XS, Meng X, Chen R, Song ZR, Li S, Wei SY, et al. The molecular subtypes of autoimmune diseases, Computational and Structural Biotechnology Journal, 2024, 23, 1348-1363. DOI: 10.1016/j.csbj.2024.03.026

[3]Patil MS, Lin LY, Marsh-Wakefield F, James EJ, Palendira M, Hawke S, et al. Multiple sclerosis: Immune cells, histopathology, and therapeutics. Sclerosis, 2024, 2(3), 117-139. DOI: 10.3390/sclerosis2030009

[4]Li H, Pan XJ, Zhang S, Shen X, Li W, Shang WF,et al. Association of autoimmune diseases with the occurrence and 28-day mortality of sepsis: An observational and Mendelian randomization study. Critical Care, 2023, 27(1), 476. DOI: 10.1186/s13054-023-04763-5

[5]Megha KB, Joseph X, Akhil V, Mohanan PV. Cascade of immune mechanism and consequences of inflammatory disorders. Phytomedicine, 2021, 91, 153712. DOI: 10.1016/j.phymed.2021.153712

[6]McInnes IB, Gravallese EM. Immune-mediated inflammatory disease therapeutics: Past, present and future. Nature Reviews Immunology, 2021, 21(10), 680-686. DOI: 10.1038/s41577-021-00603-1

[7]Tunnicliffe DJ, Palmer SC, Henderson L, Masson P, Craig JC, Tong A, et al. Immunosuppressive treatment for proliferative lupus nephritis. The Cochrane Database of Systematic Reviews, 2018, 6(6), CD002922. DOI: 10.1002/14651858.CD002922

[8]Skjødt MK, Frost M, Abrahamsen B. Side effects of drugs for osteoporosis and metastatic bone disease. British Journal of Clinical Pharmacology, 2019, 85(6), 1063-1071. DOI: 10.1111/bcp.13759

[9]Favalli EG, Maioli G, Caporali R. Biologics or janus kinase inhibitors in rheumatoid arthritis patients who are insufficient responders to conventional anti-rheumatic drugs. Drugs, 2024, 84(8), 877-894. DOI: 10.1007/s40265-024-02059-8

[10]Schwartz DM, Kanno Y, Villarino A, Ward M, Gadina M, O'Shea JJ. JAK inhibition as a therapeutic strategy for immune and inflammatory diseases. Nature Reviews Drug Discovery, 2017, 17(1), 78. DOI: 10.1038/nrd.2017.267

[11]Ferrara F, Verduci C, Laconi E, Mangione A, Dondi C, Del Vecchio M, et al. Therapeutic advances in psoriasis: From biologics to emerging oral small molecules. Antibodies, 2024, 13(3), 76. DOI: 10.3390/antib13030076

[12]Sparmann A, Vogel J. RNA-based medicine: From molecular mechanisms to therapy. The EMBO Journal, 2023, 42(21), e114760. DOI: 10.15252/embj.2023114760

[13]Khan P, Siddiqui JA, Lakshmanan I, Ganti AK, Salgia R, Jain M, et al. RNA-based therapies: A cog in the wheel of lung cancer defense. Molecular Cancer, 2021, 20(1), 54. DOI: 10.1186/s12943-021-01338-2

[14]Baylot V, Le TK, Taïeb D, Palma R, Laurence C. Between hope and reality: treatment of genetic diseases through nucleic acid-based drugs. Communications Biology, 2024, 7, 489. DOI: 10.1038/s42003-024-06121-9

[15]Hammel JH, Cook SR, Belanger MC, Munson JM, Pompano RR. Modeling immunity in vitro: Slices, chips, and engineered tissues. Annual Review of Biomedical Engineering, 2021, 23, 461-491. DOI: 10.1146/annurev-bioeng-082420-124920

[16]Justiz-Vaillant A, Gopaul D, Soodeen S, Unakal C, Thompson R, Pooransingh S, et al. Advancements in immunology and microbiology research: A comprehensive exploration of key areas. Microorganisms, 2024, 12(8), 1672. DOI: 10.3390/microorganisms12081672

[17]Brown G, Wang E, Leon A, Huynh M, Wehner M, Matro R, et al. Tumor necrosis factor-α inhibitor-induced psoriasis: Systematic review of clinical features, histopathological findings, and management experience. Journal of the American Academy Dermatology, 2017, 76(2), 334-341. DOI: 10.1016/j.jaad.2016.08.012

[18]Zhou MJ, Huang ZW, Ma ZJ, Chen J, Lin SP, Yang XW, et al. The next frontier in antibody-drug conjugates: Challenges and opportunities in cancer and autoimmune therapy. Cancer Drug Resistance, 2025, 8, 34. DOI: 10.20517/cdr.2025.49

[19]Howard EL, Goens MM, Susta L, Patel A, Wootton SK. Anti-drug antibody response to therapeutic antibodies and potential mitigation strategies. Biomedicines, 2025, 13(2), 299. DOI: 10.3390/biomedicines13020299

[20]Migliorini P, Italiani P, Pratesi F, Puxeddu I, Boraschi D. The IL-1 family cytokines and receptors in autoimmune diseases. Autoimmunity Reviews, 2020, 19(9), 102617. DOI: 10.1016/j.autrev.2020.102617

[21]Taylor PC, Feist E, Pope JE, Nash P, Sibilia J, Caporali R, et al. What have we learnt from the inhibition of IL-6 in RA and what are the clinical opportunities for patient outcomes? Therapeutic Advances in Musculoskeletal Disease, 2024, 16, 1759720X241283340. DOI: 10.1177/1759720X241283340

[22]Docherty S, Harley R, McAuley JJ, Crowe LAN, Pedret C, Kirwan PD, et al. The effect of exercise on cytokines: implications for musculoskeletal health: A narrative review. BMC Sports Science, Medicine & Rehabilitation, 2022, 14(1), 5. DOI: 10.1186/s13102-022-00397-2

[23]Iakunchykova O, Pan M, Amlien IK, Roe JM, Walhovd KB, Fjell AM, et al. Genetic evidence for the causal effects of C-reactive protein on self-reported habitual sleep duration. Brain, Behavior, & Immunity - Health, 2024, 37, 100754. DOI: 10.1016/j.bbih.2024.100754

[24]Jarlborg M, Gabay C. Systemic effects of IL-6 blockade in rheumatoid arthritis beyond the joints. Cytokine, 2022, 149, 155742. DOI: 10.1016/j.cyto.2021.155742

[25]Menter A, Krueger GG, Paek SY, Kivelevitch D, Adamopoulos IE, Langley RG. Interleukin-17 and interleukin-23: A narrative review of mechanisms of action in psoriasis and associated comorbidities. Dermatology and Therapy, 2021, 11(2), 385-400. DOI: 10.1007/s13555-021-00483-2

[26]Boutet MA, Nerviani A, Gallo Afflitto G, Pitzalis C. Role of the IL-23/IL-17 axis in psoriasis and psoriatic arthritis: The clinical importance of its divergence in skin and joints. International Journal of Molecular Sciences, 2018, 19(2), 530. DOI: 10.3390/ijms19020530

[27]García-Domínguez M. The role of IL-23 in the development of inflammatory diseases. Biology, 2025, 14(4), 347. DOI: 10.3390/biology14040347

[28]Fargnoli MC. Secukinumab: The anti-IL-17A biologic for the treatment of psoriasis. Case Reports in Dermatology, 2019, 11, 1-3. DOI: 10.1159/000501991

[29]Rafael-Vidal C, Pérez N, Altabás I, Garcia S, Pego-Reigosa JM. Blocking IL-17: A promising strategy in the treatment of systemic rheumatic diseases. International Journal of Molecular Sciences, 2020, 21(19), 7100. DOI: 10.3390/ijms21197100

[30]Zhong ZY, Su GN, Kijlstra A, Yang PZ. Activation of the interleukin-23/interleukin-17 signalling pathway in autoinflammatory and autoimmune uveitis. Progress in Retinal and Eye Research, 2021, 80, 100866. DOI: 10.1016/j.preteyeres.2020.100866

[31]Alsayb MA. Innovations in immunotherapy for autoimmune diseases: Recent breakthroughs and future directions. Frontiers in Immunology, 2025, 16, 1647066. DOI: 10.3389/fimmu.2025.1647066

[32]Lee DSW, Rojas OL, Gommerman JL. B cell depletion therapies in autoimmune disease: advances and mechanistic insights. Nature Reviews. Drug Discovery, 2021, 20(3), 179-199. DOI: 10.1038/s41573-020-00092-2

[33]Ramsköld D, Parodis I, Lakshmikanth T, Sippl N, Khademi M, Chen Y, et al. B cell alterations during BAFF inhibition with belimumab in SLE. EBioMedicine, 2019, 40, 517-527. DOI: 10.1016/j.ebiom.2018.12.035

[34]Wang XD, He J, Ding GP, Tang YX, Wang QQ. Overcoming resistance to PD-1 and CTLA-4 blockade mechanisms and therapeutic strategies. Frontiers in Immunology, 2025, 16, 1688699. DOI: 10.3389/fimmu.2025.1688699

[35]Kardalas E, Maraka S, Papagianni M, Paltoglou G, Siristatidis C, Mastorakos G. TGF-β physiology as a novel therapeutic target regarding autoimmune thyroid diseases: Where do we stand and what to expect. Medicina, 2021, 57(6), 621. DOI: 10.3390/medicina57060621

[36]Quandt Z, Perdigoto A, Anderson MS, Herold KC. Checkpoint inhibitor-induced autoimmune diabetes: An autoinflammatory disease. Cold Spring Harbor Perspectives in Medicine, 2025, 15(4), a041603. DOI: 10.1101/cshperspect.a041603

[37]Berry CT, Frazee CS, Herman PJ, Chen S, Chen A, Kuo Y, et al. Current advancements in cellular immunotherapy for autoimmune disease. Seminars in Immunopathology, 2025, 47(1), 7. DOI: 10.1007/s00281-024-01034-5

[38]Casale TB, Gimenez-Arnau AM, Bernstein JA, Holden M, Zuberbier T, Maurer M. Omalizumab for patients with chronic spontaneous urticaria: A narrative review of current status. Dermatology and Therapy, 2023, 13(11), 2573-2588. DOI: 10.1007/s13555-023-01040-9

[39]Carnazza M, Werner R, Tiwari RK, Geliebter J, Li XM, Yang N. The etiology of IgE-Mediated food allergy: Potential therapeutics and challenges. International Journal of Molecular Sciences, 2025, 26(4), 1563. DOI: 10.3390/ijms26041563

[40]Hussain Y, Khan H. Immunosuppressive drugs. Encyclopedia of Infection and Immunity, 2022, 726-740. DOI: 10.1016/B978-0-12-818731-9.00068-9

[41]Savosina P, Druzhilovskiy D, Filimonov D, Poroikov V. WWAD: The most comprehensive small molecule world wide approved drug database of therapeutics. Frontiers in Pharmacology, 2024, 15, 1473279. DOI: 10.3389/fphar.2024.1473279

[42]Kulchar RJ, Singh R, Ding S, Alexander E, Leong KW, Daniell H. Delivery of biologics: Topical administration. Biomaterials, 2023, 302, 122312. DOI: 10.1016/j.biomaterials.2023.122312

[43]Puccetti M, Pariano M, Schoubben A, Giovagnoli S, Ricci M. Biologics, theranostics, and personalized medicine in drug delivery systems. Pharmacological Research, 2024, 201, 107086. DOI: 10.1016/j.phrs.2024.107086

[44]Dodson J, Lio PA. Biologics and small molecule inhibitors: An update in therapies for allergic and immunologic skin diseases. Current Allergy and Asthma Reports, 2022, 22(12), 183-193. DOI: 10.1007/s11882-022-01047-w

[45]Massalska M, Maslinski W, Ciechomska M. Small molecule inhibitors in the treatment of rheumatoid arthritis and beyond: Latest updates and potential strategy for fighting COVID-19. Cells, 2020, 9(8), 1876. DOI: 10.3390/cells9081876

[46]Lou J, Duan HL, Qin Q, Teng ZP, Gan FX, Zhou XF, et al. Advances in oral drug delivery systems: Challenges and opportunities. Pharmaceutics, 2023, 15(2), 484. DOI: 10.3390/pharmaceutics15020484

[47]Parveen S, Fatma M, Mir SS, Dermime S, Uddin S. JAK-STAT signaling in autoimmunity and cancer. Immunotargets and Therapy, 2025, 14, 523-554. DOI: 10.2147/ITT.S485670

[48]Liebman HA. Immune modulation for autoimmune disorders: evolution of therapeutics. Seminars in Hematology, 2016, 53(1), S23-S26. DOI: 10.1053/j.seminhematol.2016.04.008

[49]Furer V, Elkayam O. Dual biologic therapy in patients with rheumatoid arthritis and psoriatic arthritis. Rambam Maimonides Medical Journal, 2023, 14(2), e0007. DOI: 10.5041/RMMJ.10494

[50]Bernardi S, Severini GM, Zauli G, Secchiero P. Cell-based therapies for diabetic complications. Experimental Diabetes Research, 2012, 2012, 872504. DOI: 10.1155/2012/872504

[51]Li H, Zuo JP, Tang W. Phosphodiesterase-4 inhibitors for the treatment of inflammatory diseases. Frontiers in Pharmacology, 2018, 9, 1048. DOI: 10.3389/fphar.2018.01048

[52]Shakya A, Liu Q, Lai C, Baker S, Greene S, Erdman P, et al. Discovery of a PDE4B and PDE4D selective bifunctional degrader for management of chronic inflammatory disorders. Journal of Translational Autoimmunity, 2025, 11, 100329. DOI: 10.1016/j.jtauto.2025.100329

[53]Crocetti L, Floresta G, Cilibrizzi A, Giovannoni MP. An overview of PDE4 inhibitors in clinical trials: 2010 to early 2022. Molecules, 2022, 27(15), 4964. DOI: 10.3390/molecules27154964

[54]Reed M, Crosbie D. Apremilast in the treatment of psoriatic arthritis: A perspective review. Therapeutic Advances in Musculoskeletal Disease, 2017, 9(2), 45-53. DOI: 10.1177/1759720X16673786

[55]Balak DMW, Gerdes S, Parodi A, Salgado-Boquete L. Long-term safety of oral systemic therapies for psoriasis: A comprehensive review of the literature. Dermatology and Therapy, 2020, 10(4), 589-613. DOI: 10.1007/s13555-020-00409-4

[56]Mahajan V, Patil B. Effectiveness and safety of oral apremilast in the management of oral ulcers in behcet's disease: A systematic review. Indian Dermatology Online Journal, 2025, 16(5), 755-759. DOI: 10.4103/idoj.idoj_779_24

[57]Lopalco G, Morrone M, Venerito V, Cantarini L, Emmi G, Espinosa G, et al. Exploring relief for Behçet's disease refractory oral ulcers: A comparison of TNF inhibitors versus apremilast. Rheumatology, 2025, 64(3), 1302-1308. DOI: 10.1093/rheumatology/keae274

[58]Li H, Zuo JP, Tang W. Phosphodiesterase-4 inhibitors for the treatment of inflammatory diseases. Frontiers in Pharmacology, 2018, 9, 1048. DOI: 10.3389/fphar.2018.01048

[59]Park Y, Kwok SK. Recent advances in cell therapeutics for systemic autoimmune diseases. Immune Network, 2022, 22(1), e10. DOI: 10.4110/in.2022.22.e10

[60]Greco R, Alexander T, Del Papa N, Müller F, Saccardi R, Sanchez-Guijo F, et al. Innovative cellular therapies for autoimmune diseases: Expert-based position statement and clinical practice recommendations from the EBMT practice harmonization and guidelines committee. EClinicalMedicine, 2024, 69, 102476. DOI: 10.1016/j.eclinm.2024.102476

[61]Muraro PA, Mariottini A, Greco R, Burman J, Iacobaeus E, Inglese M, et al. Autologous haematopoietic stem cell transplantation for treatment of multiple sclerosis and neuromyelitis optica spectrum disorder - recommendations from ECTRIMS and the EBMT. Nature Reviewa. Neurology, 2025, 21, 140-158. DOI: 10.1038/s41582-024-01050-x

[62]Oliveira MC, Elias JB, Moraes DA, Simões BP, Rodrigues M, Ribeiro AAF, et al. A review of hematopoietic stem cell transplantation for autoimmune diseases: Multiple sclerosis, systemic sclerosis and Crohn's disease. Position paper of the brazilian society of bone marrow transplantation. Hematology, Transfusion and Cell Therapy, 2021, 43(1), 65-86. DOI: 10.1016/j.htct.2020.03.002

[63]Schmitz F, Wolf D, Holderried TAW. The role of immune checkpoints after cellular therapy. International Journal of Molecular Sciences, 2020, 21(10), 3650. DOI: 10.3390/ijms21103650

[64]Aljabali AAA, Gammoh O, Qnais E, Alqudah A, El-Tanani Y, Mishra V, et al. Natural killer cell therapies in cancer: innovations, challenges, and future directions. Expert Opinion on Biological Therapy, 2025, 25(12), 1313-1331. DOI: 10.1080/14712598.2025.2601053

[65]Bluestone JA, Tang Q, Sedwick CE. T regulatory cells in autoimmune diabetes: past challenges, future prospects. Journal of Clinical Immunology, 2008, 28(6), 677-684. DOI: 10.1007/s10875-008-9242-z

[66]Rangel-Peláez C, Martínez-Gutiérrez L, Tristán-Manzano M, Callejas JL, Ortego-Centeno N, Martín F, et al. CD19 CAR-T cell therapy: A new dawn for autoimmune rheumatic diseases? Frontiers in Immunology, 2024, 15, 1502712. DOI: 10.3389/fimmu.2024.1502712

[67]Adkins S. CAR T-Cell therapy: Adverse events and management. Journal of Advanced Practitioner Oncology, 2019, 10, 21-28. DOI: 10.6004/jadpro.2019.10.4.11

[68]Honing DY, Luiten RM, Matos TR. Regulatory T cell dysfunction in autoimmune diseases. International Journal of Molecular Sciences, 2024, 25(13), 7171. DOI: 10.3390/ijms25137171

[69]Rocamora-Reverte L, Melzer FL, Würzner R, Weinberger B. The complex role of regulatory T cells in immunity and aging. Frontiers in Immunology, 2021, 11, 616949. DOI: 10.3389/fimmu.2020.616949

[70]Zhang R, Miao J, Zhu P. Regulatory T cell heterogeneity and therapy in autoimmune diseases. Autoimmunity Reviews, 2021, 20(5), 102715. DOI: 10.1016/j.autrev.2020.102715

[71]Goswami TK, Singh M, Dhawan M, Mitra S, Emran TB, Rabaan AA, et al. Regulatory T cells (Tregs) and their therapeutic potential against autoimmune disorders - Advances and challenges. Human Vaccines & Immunotherapeutics, 2022, 18(1), 2035117. DOI: 10.1080/21645515.2022.2035117

[72]Arve-Butler S, Moorman CD. A comprehensive overview of tolerogenic vaccine adjuvants and their modes of action. Frontiers in Immunology, 2024, 15, 1494499. DOI: 10.3389/fimmu.2024.1494499

[73]Zhang SL, Mo SZ, Huang WX, Zhong D, Yang XM, Xie SX, et al. Dendritic cell vaccines: Current research progress, challenges, and opportunities. Genes & Diseases, 2025, 101913. DOI: 10.1016/j.gendis.2025.101913

[74]Zhou J, Lei B, Shi F, Luo X, Wu K, Xu Y, et al. CAR T-cell therapy for systemic lupus erythematosus: Current status and future perspectives. Frontiers in Immunology, 2024, 15, 1476859. DOI: 10.3389/fimmu.2024.1476859

[75]Iancu O, Allen D, Knop O, Zehavi Y, Breier D, Arbiv A, et al. Multiplex HDR for disease and correction modeling of SCID by CRISPR genome editing in human HSPCs. Molecular Therapy, Nucleic Acids, 2022, 31, 105-121. DOI: 10.1016/j.omtn.2022.12.006

[76]Abdelnour SA, Xie L, Hassanin AA, Zuo E, Lu Y. The potential of CRISPR/Cas9 gene editing as a treatment strategy for inherited diseases. Frontiers in Cell and Developmental Biology, 2021, 9, 699597. DOI: 10.3389/fcell.2021.699597

[77]Lee PY, Wong KK. Nanomedicine: A new frontier in cancer therapeutics. Current Drug Delivery, 2011, 8(3), 245-253. DOI: 10.2174/156720111795256110

[78]Kolanu ND. CRISPR-Cas9 gene editing: Curing genetic diseases by inherited epigenetic modifications. Global Medical Genetics, 2024, 11(1), 113-122. DOI: 10.1055/s-0044-1785234

[79]Bajan S, Hutvagner G. RNA-Based therapeutics: From antisense oligonucleotides to miRNAs. Cells, 2020, 9(1), 137. DOI: 10.3390/cells9010137

[80]Zhou H, Balint D, Shi Q, Vartanian T, Kriegel MA, Brito I. Lupus and inflammatory bowel disease share a common set of microbiome features distinct from other autoimmune disorders. Annals of the Rheumatic Diseases, 2025, 84(1), 93-105. DOI: 10.1136/ard-2024-225829

[81]YangYX, Liu JH, Liu J, Wei SY, Kong XH, Mu WW, et al. Advances in immune cell-based therapeutic agents for the treatment of inflammation-related diseases. Acta Pharmaceutica Sinica B, 2026. DOI: 10.1016/j.apsb.2026.01.013.

[82]Cronin JM, Yu AM. Small RNA or oligonucleotide drugs and challenges in evaluating drug-drug interactions. Frontiers in Pharmacology, 2025, 16, 1720361. DOI: 10.3389/fphar.2025.1720361

[83]Li JM, Huang J, Liao Y, Hu T, Wang CL, Zhang WZ, et al. Gene and RNA editing: Revolutionary approaches to treating diseases. MedComm, 2025, 6(10), e70389. DOI: 10.1002/mco2.70389

[84]Marafini I, Monteleone G. Therapeutic oligonucleotides for patients with inflammatory bowel diseases. Biologics: Targets & Therapy, 2020, 14, 47-51. DOI: 10.2147/BTT.S257638

[85]Oprea M, Ionita M. Antisense oligonucleotides-based approaches for the treatment of multiple myeloma. International Journal of Biological Macromolecules, 2025, 291, 139186. DOI: 10.1016/j.ijbiomac.2024.139186

[86]MacLeod AR, Crooke ST. RNA therapeutics in oncology: Advances, challenges, and future directions. Journal of Clinical Pharmacology, 2017, 10, S43-S59. DOI: 10.1002/jcph.957

[87]Tan AC, Tan TJY, Saw SPL, Lam JYC, Yap YS, Lim WT, et al. Trials without borders-decentralized trials and ensuring access to novel cancer therapies during a global pandemic. ESMO Open, 2022, 7(4), 100537. DOI: 10.1016/j.esmoop.2022.100537

[88]Hippman C, Nislow C. Pharmacogenomic testing: Clinical evidence and implementation challenges. Journal of Personalized Medicine, 2019, 9(3), 40. DOI: 10.3390/jpm9030040

[89]Neurath MF, Cuisinier AJ. Personalized therapy in inflammatory bowel diseases: Current status and future directions. Nature Reviews Gastroenterology & Hepatology, 2022, 19(3), 179-192. DOI: 10.1038/s41575-021-00404-2

[90]Zaaijer S, Groen SC. Longitudinal clinical trial enrollment trends across 341 US FDA-approved drugs and their guiding role in precision medicine strategies. Communications Medicine, 2025, 514. DOI: 10.1038/s43856-025-01270-2

[91]Cornetta K, Bonamino M, Mahlangu J, Mingozzi F, Rangarajan S, Rao J. Gene therapy access: Global challenges, opportunities, and views from Brazil, South Africa, and India. Molecular Therapy, 2022, 30(6), 2122-2129. DOI: 10.1016/j.ymthe.2022.04.002

[92]Baris S. CTLA4-related primary immune dysregulatory disorders. Current Opinion in Allergy and Clinical Immunology, 2025, 25(6), 435-443. DOI: 10.1097/ACI.0000000000001117

[93]Costagliola G, Cappelli S, Consolini R. Autoimmunity in primary immunodeficiency disorders: An updated review on pathogenic and clinical implications. Journal of Clinical Medicine, 2021, 10(20), 4729. DOI: 10.3390/jcm10204729

[94]Meshaal S, El Hawary R, Adel R, Elaziz et DA, Erfan A, Lotfy S, et al. Clinical phenotypes and immunological characteristics of 18 Egyptian LRBA deficiency patients. Journal of Clinical Immunology, 2020, 40(6), 820-832. DOI: 10.1007/s10875-020-00799-2

[95]Ferrari S, Canarutto D. 5.20 - Gene editing approaches for haematological disorders. Comprehensive Hematology and Stem Cell Research, 2024, 372-395. DOI: 10.1016/B978-0-443-15717-2.00053-6

[96]Williams DA. Chapter 98 - principles of cell-based genetic therapies. Hematology, 2018, 1549-1558. DOI: 10.1016/B978-0-323-35762-3.00098-6

[97]Pichler WJ. Immune pathomechanism and classification of drug hypersensitivity. Allergy, 2019, 74(8), 1457-1471. DOI: 10.1111/all.13765

[98]Feddema JJ, Fernald KDS, Schikan HGCP, van de Burgwal LHM. Upscaling vaccine manufacturing capacity - key bottlenecks and lessons learned. Vaccine, 2023, 41(30), 4359-4368. DOI: 10.1016/j.vaccine.2023.05.027

Downloads

Published

2026-02-06

Issue

Section

Articles

How to Cite

Umeh, V. A., Abonyi, O. E., & Uchenna, N. O. (2026). Novel Therapeutics in the Management of Autoimmune Disorders: A Narrative Review. Clinical Medicine and Integrative Therapies, 1(1), 20-35. https://doi.org/10.64229/wcfsy429